1 | Creacion Del Blog Inscripcion A Diario De Comentarios | 20/10/2011 |
2 | Leer Propuesta De Intervension. Comentarla En Una Entrada. Darle La Primera Solucion Al Problema Propuesto ( Sin Usar Calculo ) | 21/10/2011 |
3 | Entradas Para Los Siguientes Conceptos . 1) Derivada Primeros Teoremas ( Derivada De Una Funsion Constante Exponencial, De Un Producto, De Un Cociente, De Una Raiz ) 2) Derivacion En Cadena . 3) Derivacion Implicita. | 22/10/2011 |
4 | 1) Criterios De La Primera Y Segunda Derivada. 2) Puntos Criticos: Maximos, Minimos, Inflexion. | 23/10/2011 |
5 | Optimizacion 1. Ejemplos. | 24/10/2011 |
6 | Optimizacion 2. Acercamiento Al Problema. | 25/10/2011 |
7 | Dar La Segunda Solucion Al Problema. | 26/10/2011 |
8 | Solucion Final Al Problema Con Calculo. | 27/10/2011 |
miércoles, 26 de octubre de 2011
cronograma
viernes, 21 de octubre de 2011
PROBLEM,AS RESUELTOS DE MAXIMO,MINIMOSY DE INFLEXION
La cotización de las sesiones de una determinada sociedad, suponiendo que la Bolsa funciona todos los días de un mes de 30 días, responde a la siguiente ley:
C = 0.01x3 − 0.45x2 + 2.43x + 300
1. Determinar las cotizaciones máxima y mínima, así como los días en que ocurrieron, en días distintos del primero y del último.
2. Determinar los períodos de tiempo en el que las acciones subieron o bajaron.
Del 1 al 3, y del 27 al 30 las acciones subieron, y del 3 al 27 bajaron.
DIFERENTES CASOS DE LAS DERIVADAS
Aquí voy a explicar un poco los diferentes casos de las derivas.
1)f (x)=4
Derivada exponencial: Es igual al exponente por la variable elevado a una unidad menos.
1)f(x)= 5x3
Derivada de una raíz: Es colocar el índice de la raíz como denominador de una función exponencial y se resuelve como si fuera una derivada de tipo exponencial y se multiplica por la derivada de la base.
La derivada de una función constante: es cero (0).
Ejm:
f ´(x)=0
2)f (x)=123
f ´(x)=0
Derivada exponencial: Es igual al exponente por la variable elevado a una unidad menos.
Ejm:
1)f(x)= 5x3
f´(x)= 3*5x3-1
f´(x)=15x2
2)f(x)= 2x562
f´(x)= 562*2x562-1
f´(x)=1124x561
Derivada de una raíz: Es colocar el índice de la raíz como denominador de una función exponencial y se resuelve como si fuera una derivada de tipo exponencial y se multiplica por la derivada de la base.
Ejm:
y= Raíz cubica de x5 --------------- x5/3
y´= 5/3*x5/3-1*1(Uno es la derivada de la base).
Derivada del cociente de dos funciones es igual a la derivada del numerador por el denominador menos la derivada del denominador por el numerador, divididas por el cuadrado del denominador.
Y=u/v32.---------------------- y´= u´*v-u*v´/v2
· y= (5x2-x)/ (3x4-2)
y´= (10x-1)*(3x4-2)-(5x2-x)*(12x3)/(3x4-2)2 R/
· y= (3x2+4)3/(5x3-x)
y´=3(x2+4)2(6x)*(5x3-x)-( 3x2+4)3*(15x2-1)/(5x3-x)2
Derivación en cadena: Sea f(x)= f(g(x)) ________________f´(x)=f´(g(x))*g´(x)
y= Raíz cuadrada de 3x2-1
y= (3x2-1)1/2
y= ½(3x2-1)1/2-1*6x
y= 3x*(3x2-1)1/2
PRIMERA Y SEGUNDA DERIVADA
Primera derivada.
La base del presente criterio radica en observar que los máximos o mínimos locales son consecuencia de observar los siguientes hechos:
1.- Cuando la derivada es positiva la función crece.
2.- Cuando la derivada es negativa la función decrece.
3.- Cuando la derivada es cero la función tiene un máximo o un mínimo.
Sea f(x) una función y c un número en su dominio. Supongamos que existe a y b con a<c<b tales que
1.- f es continua en el intervalo abierto (a,b) (de acuerdo con el teorema de Rolle)
2.- f es derivable en el intervalo abierto (a,b), excepto quizá en c;
3.- f´(x) es positiva para todo x<c en el intervalo y negativa para todo x>c en el intervalo.
Entonces f tiene un máximo local en c.
Nótese que un criterio similar puede tenerse para obtener un mínimo local, solo es necesario intercambiar “positivo” por “negativo”.
la función entre el intervalo (-1,1) tiene un cambio de signo, sin embargo, la función no es diferenciable en el punto x = 0, pese a eso si existe un mínimo local.
Segunda derivada:
Se deriva el primer componente por el segundo componente sin derivar más el primer componente sin derivar por la derivada del segundo componente por la derivada del exponente si fuese el caso.
Ejm:
Y= 20+e/3-2x exp3
Y=20+1/3e-2x exp3
Derivar
Y’ =0+1/3*e-2x exp3*(-6x2)
Y´=2x2*e-2x exp3
Se deriva nuevamente, esa es la segunda derivada:
Y´´= -4x*e-2x exp3+ (-2x2)* e-2x exp3*(-6x2)
a´ b a b´
y´´= -4xe-2x exp3+12x4e-2x exp3 Se puede factoriza.
Definición de extremos:
Sea f una función definida en un intervalo I que contiene al número C.
1. f(c) es el mínimo de f en el intervalo I si
f (c) es< o = f(x) para todo x en el intervalo.
2. f(c) es el máximo de f en I si
f(c)> o = f(x) para todo x en I.
A veces se les llama mínimos y máximos absolutos.
Suscribirse a:
Comentarios (Atom)


